
MEAM620 Project1.4 Report

Group 5: Xiatao Sun, Aadith Kumar, Rithwik Udayagiri, Francis Sowande

I. SYSTEM OVERVIEW

This project aims to test the control, path plan-
ning, and trajectory generation algorithms developed
in Project 1 for a quadrotor to navigate through a
deterministic cluttered environment. The first session of
this project demonstrated the abilities of generating a
trajectory based on given start and goal positions in the
environment, and controlling the quadrotor to track the
generated trajectory. The second session extended this to
planning an optimal path in a complex maze, generating
and executing a trajectory based on the path with no
collision with the environment.

The quadrotor used in this project is CrazyFlie 2.0,
which has an onboard IMU for angular velocity and
acceleration feedback and a micro-controller for esti-
mation and low level control such as attitude. Vicon,
which is a camera-based motion capture system, is
used as a sensing device to track the position of the
quadrotor in the environment. The lab computer is used
as the computation device for path planning, trajectory
generation, and high level commands such as position
control. The communication from the computer to the
quad-rotor is performed through CrazyRadio, which is
a 2.4GHz radio.

II. CONTROLLER

The controller used in this project is a non-linear
geometric controller. This controller tries to minimize
error in the quad-rotor position and orientation using
PD feedback control structure.

For the position controller, it firstly calculates the
commanded acceleration using Eqn. 1. In the equation,
kd,i and kp,i are tuned control gains. ri,T , ṙi,T , and r̈i,T
are from the flat output dictionary outputed by the
trajectory generator. ri and ṙi are estimated displacement
and velocity of the quadrotor respectively.

r̈desi = r̈i,T − kd,i(ṙi − ṙi,T)− kp,i(ri − ri,T) (1)

As shown in Eqn. 2 the total commanded force is
calculated by the addition of forces from commanded
acceleration and gravity according to the Newton’s Sec-
ond Law of Motion.

F des = mr̈des + [0 0 mg]
T (2)

This controller utilizes the intuition of b3, which is the
axis pointing upward in the body-fixed frame B, heading

towards the target direction and applying thrust. b3 is
obtained using Eqn. 3, where R is the quaternion of the
present state in rotation matrix format.

b3 = R [0 0 1]
T (3)

The input u1 is calculated using Eqn. 4

u1 = bT3 F
des (4)

The most recently tuned control gains are:

Kp = [1.8, 1.8, 2.5] Kd = [4, 4, 3]

Each element in each vector represent the control gain
on each axis sequentially. Because Kp is the coefficient
of the error between the present displacement and the
desired displacement with the unit as m, and the control
equation for the desired acceleration outputs acceleration
with the unit as m/s2, the unit of Kp should be 1/s2.
Also, Kd is the coefficient of the error between the
present velocity and the desired velocity with the unit
as m/s, the unit of kd should be 1/s.

Inside the control equation, Kp is the proportional
term, and Kd is the derivative term. Kp has a ca-
pacitance response. By increasing it, the rise time and
steady-state error will decrease, and the overshoot will
increase. Kd has a resistance response. By increasing it,
the overshoot and settling time will decrease.

Although the position control is transmitted to the
quadrotor using a 2.4GHz radio, the attitude control is
executed onboard. The attitude loops and position loops
are executed using different tasks to achieve different
rates. This is to ensure the attitude controller being
considerably faster than the position controller. As the
illustration at the beginning of this section, the thrust
is applied to the desired direction that b3 should be
pointing to. To make b3 align with the desired direction
and minimize the error as much as possible, the attitude
controller has to run extremely fast. Therefore, the
attitude controller runs on the microcontroller of the
quadrotor with an order of magnitude faster than the
position controller rather than being used directly to
solve the system‘s underactuation.

III. TRAJECTORY GENERATION

The first task in generating a smooth and efficient
trajectory, was ensuring we could find the shortest path
between our goal, and start positions without collid-
ing into any of the surrounding the objects, and to

accomplish this we implemented an A* graph search
algorithm. When implementing the A* algorithm, we
first discretized the space, by breaking it up into a finite
set of voxels of uniform dimension, with a neighbor
referring to any surrounding voxel. Each voxel was
stored as a dictionary with its unique 3D position as the
index, and its cost, parent, and a Boolean to indicate its
whether it had been explored or now. A voxel could only
be visited if the Boolean indicated it hadn’t been visited
already, if it didn’t go beyond the allowed boundaries,
and if it was unoccupied by any obstacles. To ensure
we were always checking the smallest value, we stored
each node in a heapq by cost, which automatically
organized every node in increasing numerical order of
costs; ensuring the node at the top was always the one
with the smallest cost. With this we were able to extract
a list of coordinates our drone would need to visit to
reach the goal.

With a set of points obtained, the next steps was to
ensure the robot visited each of them in an efficient
manner, and to accomplish this we implement a min-
imum jerk approach after pruning the path. To prune
the path from a dense set of points to sparse way points
we simply choose every third point from the trajectory
keeping the start and goal fixed. Through the sparse way
points we generate the trajectory.

For the minimum jerk trajectory we need a polyno-
mial of degree 5 to represent every segment between the
way points, as seen in equation 5.

pi(t) = t5ci,5 + t4ci,4 + t3ci,3 + t2ci,2 + tci,1 + ci,1
(5)

Here i is the segment number. Since we have 6 un-
knowns per segment we have a total of 6m constraints,
where m is the number of segments.

The constraints are:
• Boundary constraints, 6:

p1(0), initial position
ṗ1(0), initial velocity

p̈1(0), initial acceleration
pm(tm), final position
ṗm(tm), final velocity

p̈m(tm), final acceleration

• Position constraints, 2m− 2:

pi(ti) = pi+1(0), way point positions

• Intermediate continuity constraints, 4m− 4:

ṗi(ti) = ṗi+1(0)

p̈i(ti) = p̈i+1(0)
...
p i(ti) =

...
p i+1(0)

....
p i(ti) =

....
p i+1(0)

Total constraints = 6 + 2m− 2 + 4m− 4 = 6m

Solving these constraints for each segment individu-
ally is a tedious task and thus we use matrices to perform
these operations.

Ab = C (6)

The dimension of each matrix in equation 6 is:

dim(A) = 6m× 6m, matrix of equations
dim(b) = 6m× 1, unknown coefficients vector

dim(C) = 6m× 3, constraints matrix for x,y and z axes

Once we solve for b we would have generated a
smooth minimum jerk trajectory passing through each
way point.

Constructing matrix A, b and C can be challenging
and in equations from figure 1 we show the same for a
trajectory with 3 way points - {start, intermediate point,
goal}.

Fig. 1: Matrices for equation 6

To calculate the time between two way points we use
a dynamic approach to set an average velocity between
the two points based on the distance between them, as
shown in equation 7. The average velocities we used for
different distances are:

• First and last 3 segments - v̄ = 0.7m/s
• Segment distance: d <= 0.24 - v̄ = 0.8m/s
• Segment distance: 0.24 < d < 0.35 - v̄ = 0.9m/s
• Segment distance: d >= 0.35 - v̄ = 1m/s

ti = d/v̄i, i = segment number (7)

IV. RESULTS

Fig. 2: Map 1

Fig. 3: Map 2

Fig. 4: Map 3

Fig. 5: Position tracking for Map 3

Fig. 6: Step responses

As seen in figure 5 we obtained a typical tracking
error of 2cm

V. SIMULATION TO LAB

The first session required us to test basic motion of
the drone and perform simple paths such as tracking
the edges of a cube in space. We were able to observe
the system behavior for basic step responses. The step
responses from Lab 1 can be seen in figure 6 and
estimations of relevant values in table I.

Steady state TR TS η Delay
Step y 0.1 0.4 1.5 0.15 0.23s
Step z 0 0.4 1.5 0.1 0s

TABLE I: Characteristic values of step response

There were several things in our experiments that
highlighted how actual testing differed vastly from sim-
ulation and we used our knowledge in control system
designs to interpret these differences and address them
accordingly. In the following section, we will list them
with our interpretation of their causes and solutions.

1) Drone Veering out of Control on any command
Observation : The drone quickly stumbled out of
control for any commanded non-zero input to the
controller.
Interpretation : The controller was very ag-
gressive, overcompensating for any slight error
from desired position or orientation. Further, there
was a time delay between commanded states and
actual states because real systems have delay in
their responses. In simulation the drone worked as
the actuators we able to achieve rapid shifts and
operate completely in saturation. But this causes
trouble in real systems as time delay tends to
destabilize systems (moves the poles towards the
positive side of the plane).
The time delay can be seen clearly in the step
response and even in the maze navigation between
commanded orientation and observed orientations.
Operating at saturation often leads to situations
where the drone is not able to generate some
extra instantaneous thrust/moment than what the
simulation accounted for. Imperfect modelling of

Fig. 7: Initial Gains

Fig. 8: Final Gains

dynamics or external disturbances could make the
system demand more command value to maintain
stability but as the system is already saturated it
cannot provide that.
Solution : We needed to make the control less
aggressive, allowing the system to operate slower,
where the small-time delay has a smaller impact.
Further our control gains needed to be reduced
such that we could get desired behavior without
saturating the controller even in simulation.
The difference in the operating ranges of the
actuator can be seen for our initial and final gains
(both from simulation) in figures 8 and 7.

2) Steady State error from Trajectory
Observation : The drone on hover, or simple
trajectory tracking itself exhibited a steady state
error. Particularly in the second lab, the error was
significant. Increasing gain values reduced error
but did not remove it. This error was somewhat
constant across the trajectory.
Interpretation : As the controller did not have
an integral component, steady state error could
not be eliminated. That would also explain how
Increasing proportional gains reduced the error by
a little but also tended to saturate the controllers
and show more aggressive behaviour. Simulation
did not show significant error
Solution : Hypothetically, We could add an in-
tegral component to work on the error but that
would have been more involved, and would bring a
host of issues like integrator windup which we will
need to address. Since the error was easy to ob-
serve and model, we used a feed forward structure
where we modelled the inverse of the error based
on observation and modified the control input to
account for that directly. In this case, we had a
larger error in the Z axis, which was constant with
a value around 0.3 m. Thus, we could model our
controller to always track a position with a Z offset
of +0.3. We also played on the trade-off between
aggressive control and error to get an acceptable
error margin yet well-tuned, robust controls.

3) Dynamics changing with time and trial
Observation : With different trials, we could get
slightly different results. The changes were often
more significant if different drones were used. In
simulation, every trial had identical responses.
Interpretation : The actuator dynamics and the
drone dynamics is not constant and is subject to
wear and tear, damage and other non-modellable
characteristics. One example is the battery, when
the drone had low battery, there was a slight
difference in the power output capacity of the
actuators. Similarly, when the drone was switched
or the drone experienced damage/collisions, the
mechanics would change by a small amount, lead-
ing to different results. In simulation these factors
are modelled as constant if at all.
Solution : As these are non-certain, non-linear
parameters, there is no direct solution. The best
thing is to test and fine-tune existing values of
gain, and error models until we get a good result
in the lab.

VI. FURTHER WORK

At this point we have a system that can plan in a pre-
defined environment and navigate safely through that.
Our controller works well but is not robust to steady
state error that could be caused by sensor readings and
drone model inconsistencies. For further work, we would
have liked to add an integral component in the controller
to eliminate that error. Further, we could extend path
planning in an dynamic environment if we have an
ability to read the state of the environment live - using d*
for example. There are other control schemes we could
design and compare performances as well!

VII. REFERENCE

[1] A. Hsieh, “MEAM 620 Project 1 Phase 1”
canvas.upenn.edu, Jan. 19, 2022. [Online]. Available:
https://canvas.upenn.edu/courses/1636758/files/folder/Pro
jects/Project%201 1?preview=105918694.
[2] A. Hsieh, “06 control” canvas.upenn.edu,
Feb. 1, 2022. [Online]. Available:
https://canvas.upenn.edu/courses/1636758/files/folder/Lec
tures?preview=106389698. [Accessed Mar. 19, 2022].
[3] A. Hsieh, “10 piecewise trajectory”
canvas.upenn.edu, Feb. 1, 2022. [Online]. Available:
https://canvas.upenn.edu/courses/1636758/files/folder/Lec
tures?preview=106915045

