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Abstract

The algorithm unfolding networks with explainability of algorithms and higher
efficiency of Deep Neural Networks (DNN) have received considerable attention in
solving ill-posed inverse problems. Under the algorithm unfolding network framework,
we propose a novel end-to-end iterative deep neural network and its fast network for
image restoration. The first one is designed making use of proximal gradient descent
algorithm of variational models, which consists of denoiser and reconstruction
sub-networks. The second one is its accelerated version with momentum factors. For
sub-network of denoiser, we embed the Convolutional Block Attention Module (CBAM)
in previous U-Net for adaptive feature refinement. Experiments on image denoising and
deblurring demonstrate that competitive performances in quality and efficiency are
gained by compared with several state-of-the-art networks for image restoration.
Proposed unfolding DNN can be easily extended to solve other similar image restoration
tasks, such as image super-resolution, image demosaicking, etc.

1 Introduction 1

Image restoration is an ill-posed inverse problem to recover clean images from 2

degraded images. It can be used in many significant applications, such as medical image 3

processing, face identification, traffic statistics, cultural relics reconstruction, etc. 4

Mathematically, image restoration problems are defined as y = Hx+ n, where y and 5

x are degraded images and clean images, H represents degradation matrix, n in this 6

paper denotes Additive White Gaussian Noise (AWGN). Different image restoration 7

tasks are expressed by different operations of matrix H. For example, when H is an 8

identity matrix, image restoration problems are denoising tasks. When H is a blurry 9

matrix about 2D convolution operations, they turn into deblurring tasks. 10

The methods to solve linear inverse problems are divided into two main categories, 11

i.e., model-based methods [1–7] and learning-based methods [8–12]. Variational 12

methods minimize energy functions as tools to solve linear inverse problems. Variational 13

model is expressed as 14

x = arg min
x
{E(x) = D(x, y) + λR(x)} , (1)

where y is degraded inputs, and x is reconstructed outputs. D denotes a data fidelity 15

term to guarantee that solutions of image restoration accord with degradation process. 16
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R is a prior (regularization) term with a regularization parameter λ that ensures image 17

features. It is flexible to handle different image tasks by simply integrating different 18

degradation operations (noise level, blur kernel, and downsampling factor) into 19

equations. Whereas, model-based methods lack an intuitive evaluation. Another 20

approach is deep learning with a pre-learned function F (y; Θ), where Θ denotes 21

trainable parameters. Data-driven approaches tend to enjoy better performance. 22

However, learning-based methods suffer from black-box properties and have limitations 23

in specified tasks. 24

Above two categories of methods have their advantages and disadvantages. 25

Therefore, it would recently be attractive to explore their integration with respective 26

merits, dubbed as unrolling iterative methods. Such an integration results in 27

Plug-and-Play (PnP) methods which replace proximal operators with learning-based 28

denoiser prior. Splitting algorithms of PnP methods split an energy function into 29

multiple stand-alone solution functions. Zhang et al. [13] used Half Quadratic Splitting 30

(HQS) to split a problem into a data recovery term and a feature expression term. Fast 31

Fourier Transform (FFT) solves a data recovery sub-problem due to an analytical 32

solution. The denoiser settles a feature expression sub-problem. Lei et al. [14] put 33

forward that Deep Convolutional Neural Networks (DCNN) are inserted into Split 34

Bregman (SB) methods. Chan et al. [15] proved that plug-and-play Alternating 35

Direction Method of Multipliers (PnP-ADMM) converges to a fixed point for any 36

denoising algorithms satisfying asymptotic criterion. Methods without splitting 37

algorithms open a new door to integrate degraded operations into equations. Al-Shabili 38

et al. [16] utilized Bregman Proximal Gradient Methods of PnP (PnP-BPGM) to reduce 39

splitting algorithms for solutions of Poisson inverse problems. Gavaskar et al. [17] 40

proposed that plug-and-play Fast Iterative Shrinkage/Thresholding Algorithm 41

(PnP-FISTA) is achieved in virtue of Asymmetric denoisers. Nair et al. [18] analyzed 42

the PnP convergence of Iterative Shrinkage/Thresholding Algorithm (ISTA) using 43

asymmetric denoisers. Although superior performances through pre-training can be 44

harvested by PnP approaches, several conceptual problems remain to be addressed. 45

First, hand-crafted parameter adjustment significantly affects the time costs. Second, 46

dynamic characteristics of model optimization are ignored by fixed parameters. 47

Dynamic process to find a better solution is not represented by constant parameters. 48

Third, it is difficult to know which parameters are optimal, and, finally, soundness of 49

image reconstruction profoundly interferes with fluctuation of parameters. 50

To address above drawbacks, we advocate an end-to-end training structure with 51

trainable parameters to unroll iterative algorithms. It not only infers desirable 52

high-quality images or missing high-frequency information from a large number of 53

degraded images, but also adjusts given parameters to learn automatically. Dong et 54

al. [19] used deep unfolding networks to make up for the insufficiency of parameter 55

tuning. Liu et al. [20] unrolled ADMM into a proximal alternating direction network 56

and used dynamic parameters to guarantee at least fixed-point convergence when 57

dealing with unknown and intractable regularization terms. Yang et al. [21] put forward 58

that unrolling ADMM networks realize discriminative learning from training data 59

instead of setting hyperparameters by hand in traditional compressive sensing methods. 60

Aimed at artificial tweaking of PnP methods, Wei et al. [22] proposed a parameter 61

automatic tuning network to achieve automatically tuning of internal parameters, which 62

is a tuning-free PnP proximal algorithm. Undoubtedly, computational costs by hand 63

can be greatly controlled by a self-learning technique of parameters. 64

The contributions of this work are outlined below: 65

• The proximal gradient descent algorithm is unfolded into a novel and simple 66

Iterative Deep Neural Network (IDNN) with the U-Net denoiser. Attention 67

mechanism incorporated into the denoisers effectively understands which image 68
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information needs to be emphasized or suppressed. 69

• An improved Fast Iterative Deep Neural Network (FIDNN) is proposed based on 70

parameter constraints and a momentum factor. Faster convergence speed and 71

shorter testing runtime are obtained without stronger criteria compared to 72

identical iteration-based methods. 73

2 Related works 74

PnP approaches have the benefit of being incredibly convenient. Time costs of 75

parameter adjustment are better controlled by deep unfolding networks. We provide a 76

brief review of two methods based on effective DCNN denoisers. 77

2.1 Plug-and-Play method 78

PnP methods have recently made significantly empirical progress, particularly with 79

incorporation of learning-based denoisers. Moreover, Convolutional Neural Networks 80

(CNN) have shown good performances through end-to-end training, e.g., 81

FFDNet [10],TNRD [11] and DnCNN [23] for image denoising, DPDNN [19] and 82

IRCNN [24] for non-blind deblurring. These methods demonstrate that CNN can train 83

an excellent mapping function from a large number of degraded images to clean images. 84

As a result, PnP approaches can make use of a pre-trained CNN denoiser to solve the 85

Gaussian-like denoising subproblem 86

x = arg min
x

{
1

2
‖Hx− y‖22 + λΦ(x)

}
, (2)

where λ is a penalty parameter. PnP methods through variable splitting algorithms, 87

such as HQS and SB, decouple data term and prior term of Eq (2). When HQS 88

introduces an auxiliary variable s, Eq (2) becomes a constrained optimization problem 89

given by 90

(x, s) = arg min
x,s

{
1

2
‖Hx− y‖22 + λΦ(s)

}
, s.t. x = s. (3)

An equally constrained problem transforms into an unconstrained problem, namely 91

(x, s) = arg min
x,s

{
1

2
‖Hx− y‖22 + λΦ(s) +

µ

2
‖x− s‖22

}
, (4)

where µ denotes a penalty parameter. Above problem can be addressed by resolving 92

iteratively following subproblems for x and s while holding remaining variables fixed, 93


xk = arg min

x

{
1

2
‖Hx− y‖22 +

µ

2
‖x− sk−1‖22

}
, (5a)

sk = arg min
s

{
1

2(
√
λ/µ)2

‖s− xk‖22 + Φ(s)

}
. (5b)

In this paper, k is iteration index. Eq (5a) has a closed-form analytic solution x, 94

xk = F−1

(
F(H)F(y) + µkF (sk−1)

F(H)F(H) + µk

)
, (6)
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Algorithm 1 Two-step iterative algorithm

Initialization:
(1) Set H, H̄, γ > 0, k = 1;
(2) Initialize z0, x0 = y.

While not converge do
(1) Compute zk = xk−1 − γkH̄ (Hxk−1 − y);
(2) Compute xk = f(zk,

√
λ/µk);

(3) k = k + 1.
End while
Output: xk

where the F(·), F−1(·), and F(H) express FFT, inverse FFT, and complex conjugate of 95

F(·), respectively. Gradient descent can also solve x-subproblem of Eq (5a) [19]. Any 96

advanced Gaussian denoiser can be plugged into alternating iterations to solve 97

z-subproblem. Therefore, numerous ill-posed inverse problems are quickly addressed 98

using PnP approaches. 99

2.2 Deep unfolding network 100

Deep unfolding networks enhance interpretability of network structures in contrast 101

to pure neural networks. Chen and Pock [11] proposed a flexible frame with a dynamic 102

nonlinear diffusion model based on denoising tasks. Zhang and Ghanem [25] achieved 103

proximal mapping related to sparsity-inducing regularizer without handcraft parameter 104

adjustment. Tolooshams et al. [26] utilized an unfolding autoencoder neural network 105

with an accelerated proximal gradient to learn compression matrix. Based on prior 106

knowledge, model-based iterative networks with stationary layers are interpreted as the 107

convolution and activation operations. 108

DCNN denoisers can be plugged into end-to-end deep unfolding networks to gain 109

self-learning parameters. Wei et al. [22] achieved parameter automatic learning by 110

proximal algorithms. Zheng et al. [27] used Hybrid ISTA to unfold ISTA with trainable 111

parameters drawing in free-form Deep Neural Networks (DNN) to obtain guaranteed 112

convergence. Jiu and Pustelnik [28] used primal-dual proximal iteration associated with 113

standard penalized co-log-likelihood minimization to design a deep neural network. 114

Iterative-based unfolding networks are used to achieve effectiveness of machine learning 115

and adaptability of formula derivation. 116

3 Proximal gradient descent algorithm 117

3.1 Two-step iterative algorithm 118

Since deep unfolding networks are well-studied, it is interesting to integrate different 119

degraded operations into an iterative algorithm. Different image restoration problems 120

can be solved by studying uniformity of different degradation operations. To achieve 121

this, a proximal operator is used to implement proximal gradient descent algorithm 122

without splitting algorithms. Taylor expansion linearization equation [29] is calculated 123

as 124

xk = arg min
x

{
1
2 ‖Hxk−1 − y‖22 + µ

2 ‖x− xk−1‖22
+
〈
H̄ (Hxk−1 − y) , (x− xk−1)

〉
+ λΦ(x)

}
, (7)

where µ denotes the penalty parameter, ‖(x− xk−1)‖22 denotes a proximal operator, y 125

denotes degraded inputs, x denotes restored outputs. For image deblurring, H̄ is a 126
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Algorithm 2 Three-step iterative algorithm

Initialization:
(1) Set H, H̄, γ > 0, ρ ∈ [0, 1], k = 1;
(2) Initialize z̄0, x0, b0 = y.

While not converge do
(1) Compute z̄k = bk − γkH̄ (Hbk − y);
(2) Compute xk = f(z̄k,

√
λ/µk);

(3) Compute bk+1 = xk + ρk (xk − xk−1);
(4) k = k + 1.

End while
Output: xk

transpose convolution matrix. And by omitting a data term that is irrelevant to results, 127

Eq (7) is merged into 128

xk = arg min
x

{
µ

2

∥∥∥∥x− xk−1 +
1

µ

(
H̄ (Hxk−1 − y)

)∥∥∥∥2

2

+ λΦ(x)

}
. (8)

For the convenience of calculation, auxiliary variable z is introduced to substitute for 129

complex and lengthy variable. Variable z is equal to 130

zk = xk−1 − γkH̄ (Hxk−1 − y) , (9)

where γ is step size. Therefore, the solution can be expressed as 131

xk = arg min
x

{
1

2(
√
λ/µ)2

‖x− zk‖22 + Φ(x)

}
. (10)

This is a Gaussian denoising problem with a standard deviation parameter σk =
√
λ/µk. 132

Clean images are gained using any existing DCNN denoiser, i.e., xk = f (zk), where f(·) 133

denotes a high-performing denoiser approximating a mapping equation. In summary, 134

proposed iterative algorithm is summed up in Algorithm 1. The two-step algorithm is 135

unfolded into an end-to-end neural network based on DCNN denoisers. 136

3.2 Three-step iterative algorithm 137

3.2.1 Fast iterative algorithm 138

Fast algorithms, e.g., Fast ADMM [31] and FISTA [32], show that convergence speed 139

is accelerated by momentum factors. In this paper, we therefore adopt momentum 140

factors to speed up convergence. Based on Algorithm 1, a momentum factor ρ is 141

introduced to force the variable x to continue being calculated with a similar inertial 142

force. The momentum factor falls between 0-1. The updated value of variable x is 143

gotten by multiplying difference between two previous iterations by a momentum factor, 144

i.e., ρk (xk − xk−1). A new variable b is equal to 145

bk+1 = xk + ρk (xk − xk−1) . (11)

The new auxiliary variable z̄ of accelerated methods changes due to the momentum 146

factor ρ. Auxiliary variable becomes 147

z̄k = bk − γkH̄ (Hbk − y) , (12)

where b and z are intermediate variables of final results, γ represents step size. The fast 148

iterative algorithm is summarized as Algorithm 2. Stimulated by IDNN, Algorithm 149
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Fig 1. Framework of proposed iterative deep neural network.

2 can also be unfolded into a fast iterative deep neural network. Proposed fast method 150

can accelerate convergence effectively, and detailed description will be given in Section 151

5.4. Moreover, FIDNN indeed shortens testing runtime than IDNN. 152

3.2.2 Parameter constraint 153

Parameters including step size and a momentum factor are likely to affect image 154

reconstructed solutions. The discovery that FIDNN might result in non-positive step 155

size and momentum factors is in conflict with how these parameters are defined. To 156

ensure positive convergence, these parameters including {γk, ρk}K=6
k=1 must also be 157

subject to specific constraints. Parameter constraints [30] are guaranteed using auxiliary 158

variables. These parameters follow a pattern in our implementation, in which γ 159

smoothly decays with iterations, while ρ monotonously increases. With above rules, 160

parameter constraint can be described as 161{
γk = sp (w1k + c1) , w1 < 0

ρk = sp(w2k+c2)−sp(w2+c2)
sp(w2k+c2) , w2 > 0

(13)

where sp(x) is Softplus equation, i.e., sp(x) = ln(1 + exp(x)). The process that image 162

restoration accords with meaning of model-based iterative solutions can be validly 163

guaranteed. 164

4 Iterative deep neural networks 165

4.1 Deep unfolding network framework 166

Algorithm 1 and Algorithm 2 are unrolled into end-to-end iterative deep neural 167

networks without numerous manual parameters. Network framework of Algorithm 1 168

is shown in Fig 1. Model framework of Algorithm 2 possesses a similar structure. One 169

stage of proposed networks corresponds to one iteration of Algorithm 1. For K 170

iterations, briefly introduce the first stage of forwarding propagation. First, variable 171

y ∈ Rny is equal to degraded inputs. Variables of x0 and z0 are initialized to variable y. 172

Variables of x0 and y times downgraded operations. Add x0 to previous results to obtain 173

z1. The z1 is processed by any efficient DCNN denoisers to get x1. Denoiser in this 174

paper is high-performance U-Net [33]. The same procedures are carried out six times. 175

4.2 Deep convolutional neural network 176

Pre-trained DCNN models are attractive to be used as denoisers. Zhang et.al [13] 177

leveraged noise level maps as inputs to train denoiser for image restoration tasks. Tirer 178

and Giryes [34] used IRCNN denoiser to solve image inpainting and deblurring 179

problems. Li and Wu [35] exploited DnCNN denoiser to resolve depth image tasks. 180

Romano et al. [36] utilized explicit regularization by pre-trained TNRD as a Gaussian 181
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Fig 2. Model architecture of proposed DCNN denoiser. Right part is specific
operations.

Table 1. Ablation study of denoising on Set12 dataset.

Methods DCNN N DCNN FIDNN N FIDNN
Noise level 15 32.82 32.83 32.89 32.91
Noise level 25 30.49 30.52 30.56 32.58
Noise level 50 27.34 27.39 27.47 27.53

denoiser to solve deblurring and super-resolution problems. Motivated by U-net for 182

image segmentation, proposed U-net with only convolutional and activation operations 183

is convenient to process for any size of natural images. Different from denoiser 184

sub-network [19], our proposed methods introduce the attention mechanism to obtain 185

attention mapping making up for inadequate weight information of image pixels. The 186

proposed network contains three parts: feature extraction, Convolutional Block 187

Attention Module (CBAM) [37] and image reconstruction, as shown in Fig 2. 188

In feature extraction module, there are four similar blocks. For each encoder layer, it 189

consists of a convolution operation of 3×3 kernel and activation operations of Rectified 190

Linear Unit (ReLU) nonlinearity to produce 64-channel feature maps. Each 191

down-sample layer contains a convolution operation followed by an activation function. 192

Receptive field is increased in down-sample layers to reduce spatial resolution of feature 193

maps. Finally, there is an encoder layer with only a convolution and an activation 194

operation. It is emphasized that feature maps are scaled twice as small by scaling factor 195

2 in down-sample layer, but image feature size is unchanged in encoder layer. 196

CBAM can be seamlessly integrated into any CNN architecture and trained by 197

end-to-end methods together with basic CNN on account of CBAM is a lightweight 198

general-purpose module. Attention maps are gained by sequentially computing two 199

independent dimensions, namely channel, and space. Input feature maps are multiplied 200

by attention maps to obtain adaptive feature refinement. Feature-channel relationship is 201

exploited by channel attention to produce a channel attention map, focusing on ”what” 202

makes sense given an input. Spatial connections of image features are exploited by 203

spatial attention to generate spatial attention maps, focusing on “where” is an 204

informative element. Spatial attention is complementary to channel attention. 205

Attention module effectively boosts information flow to learn which image information 206

to be emphasized or suppressed. Comparative experiments on deblurring and denoising 207

are done to demonstrate benefits of attention mechanism, as indicated in Section 5.2. 208

The image reconstruction module comprises up-sample layers that increase spatial 209

resolution of feature maps followed by feature decoder layer. For each up-sample layer, 210

it contains a transpose convolution operation of 3×3 kernel and ReLU nonlinearity to 211

produce 64-channel feature maps. Feature maps are scaled twice as large by scaling 212
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Table 2. Ablation study of deblurring on Set10 dataset.

Methods DCNN N DCNN FIDNN N FIDNN
Gaussian blur for noise level 2

Standard deviation 1.2 33.51 33.65 33.60 33.85
Standard deviation 1.6 30.53 30.63 30.91 31.13

Motion blur for noise level 7.65
Levin 19×19 [45] 28.90 28.98 29.12 29.17
Levin 17×17 [45] 28.49 28.55 28.56 28.66

factor 2 in up-sample layer. Reconstructed images suffer from a loss of some of their 213

spatial information during feature extraction process. To compensate for loss of spatial 214

information, cascaded feature maps are obtained by fusing one generated in up-sample 215

layer with one generated in encoder layer. Cascading operations double the number of 216

channels from 64 to 128. For decoder layers, there are five convolution layers. The first 217

four have a convolution layer and ReLU nonlinearity. Only convolutional operations are 218

used in final one. But feature map channel is adjusted through the first convolution 219

operations from 128 to 64. The others generate 64-channel feature maps. Then feature 220

maps are put into the last convolutional layer to generate the same number of channels 221

as observed images. However, denoiser networks predict residual parts instead of 222

directly utilizing outputs of the last convolutional layer as reconstructed images, which 223

has been proved to be more robust. Therefore, a shortcut is exploited from inputs to 224

reconstructed images. 225

5 Experiments and results 226

5.1 Training process 227

5.1.1 Training dataset 228

Observed images are gained utilizing different degraded operations. For denoising, 229

clean images are added with AWGN for different noise levels to produce noisy images. 230

For deblurring, blurry images are gained by convolving clear images with different blur 231

kernels and adding AWGN. Training dataset is DIVerse 2K (DIV2K) resolution image 232

dataset [38]. Each image is randomly cropped into 1000 images of size 128. During 233

training process, these inputs are cropped into 64 size patches. To realize data 234

augmentation, cropped randomly patches are flipped and rotated to generate a total of 235

250,000 ones. 236

5.1.2 End-to-end training 237

Each DCNN denoisers shares the same parameters to reduce numerous parameters 238

and prevent overfitting. In our implementation, networks are trained using Mean 239

Square Error (MSE) loss function 240

Θ = arg min
Θ

{
N∑
n=1

‖F (yn; Θ)− xn‖2
}
, (14)

where yn and xn are ith pair of damaged and clear image patches, F(yn; Θ) is proposed 241

networks with parameters Θ. ADAM optimizer [39] is utilized to optimize parameters. 242

Convolutional kernels are initialized by Xavier initializers developed in [40]. Warmup 243

scheduler strategy is adopted for learning rate. Learning rate remains constant over the 244

September 30, 2022 8/17



Table 3. PSNR results of denoising by different methods on Set12 dataset.

Image C.man House Peppers Starfish Monor Airpl Parrot Lena Barbara Boat Man Couple Average
Noise level 15

BM3D [41] 31.93 34.94 32.70 31.16 31.86 31.08 31.38 34.27 33.11 32.14 31.93 32.12 32.39
EPLL [42] 31.81 34.13 32.58 31.07 32.03 31.16 31.41 33.86 31.33 31.92 31.97 31.89 32.10
TNRD [11] 32.15 34.56 33.02 31.76 32.55 31.45 31.65 34.25 32.15 32.13 32.25 32.08 32.50
IRCNN [24] 32.53 34.88 33.21 31.96 32.98 31.66 31.88 34.50 32.41 32.36 32.36 32.37 32.76
DPDNN [19] 32.44 35.40 33.19 32.06 33.32 31.78 31.45 34.80 32.81 32.55 32.52 32.51 32.90
IDNN 32.54 35.19 33.38 32.23 33.16 31.78 31.99 34.70 32.57 32.41 32.43 32.49 32.91
FIDNN 32.57 35.19 33.36 32.22 33.16 31.75 31.97 34.71 32.56 32.43 32.44 32.53 32.91

Noise level 25
BM3D [41] 29.46 32.86 30.16 28.56 29.25 28.43 28.93 32.07 30.72 29.90 29.63 29.72 29.97
EPLL [42] 29.25 32.04 30.06 28.44 29.30 28.56 28.91 31.63 28.56 29.68 29.62 29.48 29.63
TNRD [11] 29.70 32.52 30.53 29.03 29.85 28.89 29.19 31.99 29.42 29.90 29.89 29.73 30.05
IRCNN [24] 30.12 33.02 30.81 29.21 30.20 29.05 29.47 32.40 29.93 30.17 30.02 30.05 30.37
DPDNN [19] 30.12 33.55 30.90 29.43 30.31 29.14 29.28 32.69 30.30 30.34 30.15 30.24 30.54
IDNN 30.16 33.47 31.05 29.50 30.42 29.21 29.55 32.72 30.02 30.26 30.10 30.21 30.56
FIDNN 30.16 33.52 30.99 29.47 30.42 29.24 29.56 32.72 30.04 30.27 30.13 30.20 30.58

Noise level 50
BM3D [41] 26.14 29.69 26.68 25.03 25.82 25.11 25.90 29.04 27.23 26.79 26.82 26.46 26.73
EPLL [42] 26.02 28.75 26.62 25.05 25.79 25.24 25.83 28.44 24.80 26.66 26.73 26.22 26.35
TNRD [11] 26.61 29.46 27.13 25.42 26.30 25.60 26.09 28.96 25.71 26.95 27.00 26.50 26.82
IRCNN [24] 27.16 29.90 27.33 25.48 26.66 25.78 26.48 29.36 26.17 27.17 27.14 26.86 27.12
DPDNN [19] 27.12 31.04 27.44 25.95 27.00 25.97 26.47 29.86 27.22 27.42 27.32 27.23 27.50
IDNN 27.25 30.76 27.52 25.75 26.95 26.05 26.59 29.79 26.50 27.38 27.28 27.19 27.42
FIDNN 27.29 30.80 27.74 25.96 27.12 26.02 26.67 29.87 26.88 27.37 27.35 27.28 27.53

first three epochs of early training. We in later epochs use CosineAnnealingLR strategy. 245

Learning rate is initially set to 0.0002. Proposed network is implemented under Pytorch 246

framework and trained by Nvidia RTX 3090. Denoising experiment takes about 32 247

hours to achieve convergence, while deblurring experiment takes about 48 hours. 248

Parameter γ initialization of IDNN is set to 1.0. Parameters {w1, c1, w2, c2} of FIDNN 249

are initialized as {−0.2, 0.5, 1.2, 0.0}. 250

5.2 Ablation study 251

Regarding the effects of attention module with U-Net, we conduct whether models 252

have CBAM or not. Several comparative experiments are in Tables 1 and 2. DCNN N 253

represents a DCNN denoiser without CBAM. FIDNN N represents a fast iterative 254

network without CBAM. When noise level is high, DCNN denoiser with attention 255

mechanism makes great progress. Regarding Gaussian deblurring experiments from 256

Table 2, FIDNN increases PSNR value by 0.25. Therefore, information flow is effectively 257

taught which information needs to be emphasized or suppressed due to attention 258

module. In future trials, methods proposed in this paper are all introduced into 259

attention mechanism. 260

To verify the effectiveness of consolidation degradation operations, we implement 261

two types of experiments, i.e., DCNN denoisers and iterative network FIDNN. 262

Comparable trials are shown in Tables 1 and 2. For denoising and deblurring, FIDNN 263

without attention mechanism improves maximum PSNR gains by up to 0.13 and 0.38, 264

respectively. The 0.5 and 0.19 gains of average PSNR in gaussian and motion deblurring 265

are realized over pure denoisers with CBAM, demonstrating the significance of 266
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Table 4. Average PSNR results of denoising by different methods on
CBSD68 and Kodak24 datasets.

Datasets Noise level CBM3D [41] IRCNN [24] DnCNN [23] FFDNet [10] DPDNN [19] FIDNN

CBSD68
15 33.47 33.87 33.89 33.88 33.99 34.02
25 30.69 31.18 31.23 31.22 31.30 31.35
50 27.37 27.88 27.92 27.97 28.14 28.18

Kodak24
15 34.41 34.69 34.59 34.63 34.73 34.80
25 31.81 32.15 32.13 32.13 32.12 32.21
50 28.62 28.94 28.95 29.11 29.11 29.23

(a) original (b) BM3D (25.90) (c) TNRD (26.09) (d) IRCNN (26.48) (e) DPDNN (26.47) (f) FIDNN (26.67)

Fig 3. Gray image denoising results for noise level 50 on ‘Parrot’ image from
Set12 dataset.

integrating degradation operations into unfolding networks. 267

5.3 Image restoration results 268

5.3.1 Denoising 269

We compare our methods with several state-of-the-art denoising methods, including 270

two model-based methods, i.e., BM3D [41] and EPLL [42], and three learning-based 271

methods, i.e., TNRD, DPDNN, and IRCNN. Average PSNR results of different 272

methods are shown in Table 3 on widely-used Set12 dataset [23]. Learning-based 273

methods are superior to model-based methods. DPDNN greatly outperforms IRCNN 274

and TNRD, while FIDNN performs better for higher noise levels than DPDNN. We also 275

test denoising results of Color Berkeley Segmentation Dataset (CBSD68) [43] and 276

Kodak24 dataset [44], as shown in Table 4. Model-based method, i.e., CBM3D [41], is 277

outperformed by FIDNN to 0.81 average PSNR gains for noise level 50 on CBSD68 278

dataset. 279

Qualitative results of gray images for noise level 50 are shown in Fig 3. DPDNN is 280

surrounded by edge connections, while FIDNN is filled with better and smooth image 281

details. Visual effects of color images are shown in Figs 4 and 5. CBM3D is too smooth 282

to preserve the edge. Three learning-based methods suffer from poor edge preservation 283

of small objects at a distance. In contrast, proposed method benefits from 284

comprehensive textures and sharper edges. 285

5.3.2 Deblurring 286

Deblurring experiments of non-linear blur kernels are carried out to further confirm 287

wide applicability of proposed methods, as shown in Tables 5 and 6. The blur kernel 288

includes Gaussian blur of size 25 with standard deviations of 1.2 and 1.6, and motion 289

blur of size 19 and 17 in [45]. For Gaussian deblurring, AWGN for noise level 2 is added 290

to blurred images. For motion deblurring, add AWGN for noise level 7.65 to them. The 291
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Table 5. PSNR results of deblurring by different methods on Set10 dataset.

Image Barbara Boats Butterfly C.Man House Leaves Lena Parrot Peppers Starfish Average
Gaussian blur with standard deviation 1.2 for noise level 2

IDDBM3D [46] 31.92 33.33 32.17 30.18 35.60 33.18 33.12 34.55 31.74 32.90 32.60
IRCNN [24] 31.40 33.40 32.45 30.44 35.51 33.68 33.44 34.58 32.00 33.42 33.03
IRCNN+ [13] 31.32 32.69 32.45 30.04 34.40 33.13 32.80 33.83 31.49 32.72 32.49
DPDNN [19] 31.62 33.81 33.33 30.84 36.01 34.01 34.13 35.51 32.19 34.23 33.57
IDNN 31.60 33.86 33.20 30.83 35.94 34.15 34.14 35.51 32.35 34.33 33.59
FIDNN 32.39 34.02 33.40 30.93 36.16 34.39 34.38 35.72 32.44 34.62 33.85

Gaussian blur with standard deviation 1.6 for noise level 2
IDDBM3D [46] 25.99 31.17 29.79 27.68 33.56 30.13 30.91 31.90 29.64 30.57 30.13
IRCNN [24] 26.15 31.41 30.44 28.06 33.79 30.43 31.14 31.82 30.68 30.77 30.47
IRCNN+ [13] 25.77 30.87 30.06 27.65 32.81 30.14 30.83 31.64 29.79 30.42 30.00
DPDNN [19] 26.47 31.54 30.67 28.24 34.25 30.23 31.48 32.40 30.18 32.00 30.75
IDNN 25.60 31.62 31.13 28.63 33.96 30.95 31.65 32.79 30.90 31.77 30.90
FIDNN 26.02 31.80 31.42 28.84 34.20 31.48 31.79 32.90 30.98 32.12 31.13

19 × 19 motion blur kernel 1 of [45] for noise level 7.65
IRCNN [24] 28.18 29.12 28.51 28.11 32.03 28.41 29.51 31.07 28.87 27.86 29.17
IRCNN+ [13] 28.29 29.03 27.99 28.31 31.70 27.73 29.56 30.74 28.68 27.55 28.96
DPDNN [19] 28.01 29.19 28.24 27.77 32.06 27.98 29.42 31.03 28.42 28.00 29.01
IDNN 28.14 29.36 28.23 27.89 32.06 27.81 29.70 31.17 28.79 27.87 29.10
FIDNN 28.22 29.33 28.30 28.06 32.06 27.96 29.77 31.23 28.76 27.99 29.17

17 × 17 motion blur kernel 2 of [45] for noise level 7.65
IRCNN [24] 27.36 28.94 28.20 27.70 31.94 27.91 29.27 30.67 28.71 27.67 28.84
IRCNN+ [13] 27.34 28.78 27.77 27.76 31.42 27.38 29.17 30.37 28.36 27.46 28.58
DPDNN [19] 26.86 28.84 27.47 27.48 31.91 27.28 29.23 30.46 28.02 27.82 28.54
IDNN 26.63 28.82 27.37 27.25 31.69 26.86 29.30 30.60 28.28 27.34 28.41
FIDNN 26.76 29.06 27.60 27.40 31.91 27.48 29.46 30.81 28.47 27.64 28.66

(a) original (b) CBM3D (25.90) (c) IRCNN (30.91) (d) FFDNet (30.98) (e) DnCNN (31.02) (f) FIDNN (31.40)

Fig 4. Color image denoising results for noise level 50 on ‘253055’ image
from CBSD68 dataset.

(a) original (b) CBM3D (25.90) (c) IRCNN (30.91) (d) FFDNet (30.98) (e) DnCNN (31.02) (f) FIDNN (31.40)

Fig 5. Color image denoising results for noise level 50 on ‘Kodim23’ image
from Kodak24 dataset.

model-based method, i.e., IDDBM3D [46], and four learning-based methods, including 292

IRCNN, IRCNN+ [13], DPIR [13], and DPDNN are compared with our methods on 293

September 30, 2022 11/17



Table 6. Average PSNR results of Gaussian deblurring for different
standard deviation by different methods on Kodak24 dataset.

Methods IRCNN [24] IRCNN+ [13] DPDNN [19] DPIR [13] FIDNN
Standard deviation 1.2 32.96 32.17 32.89 32.69 32.99
Standard deviation 1.6 30.40 29.70 30.46 30.03 30.55

(a) original (b) IRCNN(28.94) (c) IRCNN+(28.78) (d) DPDNN(28.84) (e) FIDNN(29.06)

Fig 6. Motion Deblurring results for kernel size 17 and noise level 7.65 on
‘Boat’ image from Set10 dataset.

(a) original (b) IRCNN (33.25) (c) DPIR (32.64) (d) DPDNN (33.04) (e) FIDNN (33.34)

Fig 7. Gaussian deblurring results for standard deviation 1.6 and noise level
2 on ‘kodim19’ image from Kodak24 dataset.

widely-used Set10 dataset [19]. IRCNN+ refers to the method [13] in which the denoiser 294

sub-network is replaced with IRCNN. Model-based methods perform poorly while 295

processing Gaussian blur. Compared to the same iteration-based method, i.e., DPDNN, 296

0.12 gains of average PSNR for motion blur of size 17 are acquired by FIDNN. In color 297

image dataset, FIDNN outclasses two PnP approaches. 298

Qualitative results of deblurring experiments are shown in Figs 6 and 7. IRCNN is 299

so smooth that it produces distorted edges. IRCNN+ and DPDNN are encircled by 300

obvious motion artifacts. However, FIDNN effectively defeats motion artifacts as well as 301

enjoys sharper edges and a more pleasant texture structure than other methods. 302

5.4 Convergence analysis 303

Effects of detail restoration are likely to be affected by the trend of parameter 304

variation. Under the same configuration, step size of DPDNN shows a downward trend, 305
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(a) (b)

Fig 8. Parameter variations on motion deblurring with kernel size 19. (a):
step size and penalty parameter of DPDNN; (b): step size and momentum parameter of
FIDNN.

(a) x1 (25.48) (b) x2 (26.43) (c) x3 (27.01) (d) x4 (28.62) (e) x5 (30.99) (f) x6 (32.06)

Fig 9. Gray deblurring results and parameter variations on each iteration
for motion blur with kernel size 19 on ‘House’ image from Set10 dataset.

and penalty parameter shows an upward trend from Fig 8a. This is consistent with 306

meaning of parameters mentioned in this paper. However, DPDNN in later iterations 307

shows a very modest fluctuation. Its unstable noise variance and blur composition go 308

counter to iterative solutions. In early stages, parameters of FIDNN change rapidly. 309

Correspondingly, degraded images become clearer quickly, as shown in Fig 9. Therefore, 310

parameter variation provides a clearer explanation of what an iterative solution means. 311

Quantitative experiments are shown in Fig 10 to demonstrate influence of 312

parameters. Under the same configuration, DPDNN yields vital fluctuations in 313

intermediate periods. It may be connected to parameter instability. IRCNN sacrifices 314

more iterations to achieve good-performing results. IRCNN+ converges quickly in early 315

stages, but its stability is poor. Contrarily, FIDNN remains fast and stable convergence 316

with a lower number of iterations. 317

5.5 Model complexity and runtime 318

Under the same hardware equipment, we test model complexity and testing runtime 319

for several deep learning methods, as shown in Table 7. IRCNN gains the best 320

performance in model FLOPs and parameters. With the same U-Net denoiser, 321

FIDNN N owns better results of average PSNR for higher noise levels than DPDNN. 322

Numerous convolution parameters of FIDNN result in longer testing runtime. It is 323

worthwhile to mention that runtime of FIDNN does decrease distinctly over IDNN per 324

image. 325
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(a) (b) (c)

Fig 10. Comparison of PSNR and SSIM results for motion blur kernel size
17 and noise level 7.65. (a): PSNR results on ‘Parrrot’ image; (b): SSIM results on
‘Parrrot’ image; (c): Average PSNR results on Set10 dataset.

Table 7. FLOPs (in G) and parameters on image size 256×256. Runtime (in
seconds) of each image and average RSNR (in dB) for noise level 50 on
Kodak24 dataset.

Methods IRCNN [24] DnCNN [23] FFDNet [10] DPDNN [19] IDNN FIDNN N FIDNN
FLOPs 12.180 37.112 15.903 149.430 149.431 149.430 149.431
Paras 185.857K 556.289k 485.316K 1.290M 1.364M 1.364M 1.364M

Run time 0.034 0.048 0.020 0.161 0.218 0.178 0.189
PSNR 28.94 28.95 28.98 29.11 29.15 29.19 29.24

The experiments are implemented in Pytorch framework on a PC with an Intel core
i7-11700k CPU and an Nvidia RTX 3090 GPU.

6 Conclusion 326

This work links variational models of model-based methods to learnable deep 327

learning approaches. Firstly, the proximal operator is used to implement Taylor 328

expansion linearization under energy minimization of a variational function. Proximal 329

gradient descent algorithm is unrolled to IDNN model with proposed U-Net denoiser by 330

end-to-end training. The attention mechanism incorporated into denoiser sub-network 331

effectively understands emphatic or suppressive image information. Furthermore, by 332

introducing a momentum factor that drives reconstruction results to continue iterating 333

with inertial force, IDNN is extended to fast IDNN (FIDNN) without stronger 334

conditions to speed up the convergence. 335

Self-learning parameters in this paper through an end-to-end approach effectively 336

reduce manually tuning costs. Moreover, proposed iterative solution with trainable 337

parameters can express dynamic characteristics of image reconstruction than constant 338

parameters. The experimental results show that FIDNN with fewer iterations has more 339

stable and faster test convergence than several iterative-based unfolding methods. Due 340

to extensive applicability of proposed models, more computer vision tasks in the future 341

can be addressed by handling different degraded operations simultaneously. 342
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